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Abstract—With the growth of Deep Learning and Computer
Vision, Autonomous driving has become a hot research topic.
Semantic segmentation plays a key role in the understanding
of vehicle camera input images which assigns a label to each
pixel in the image indicating which class the pixel belongs
to. There have been many semantic segmentation researches
in the direction of autonomous driving, but the scenarios of
these researches are basically on urban roads. In this report,
we implement and compare the segmentation accuracy of three
models—DeepLabV3, DeepLabV3+, and PSPNet—on a natural
environment dataset. We compare the performance of these
three models on the mIOU and Accuracy metrics, and also
summarise the features of their prediction results. At the end
of the report, we present several directions for future work. Our
trained weights can download from here: Google Drive

I. INTRODUCTION
A. Semantic Segmentation

Semantic segmentation, together with image classification
and object detection, are known as the three main tasks of
computer vision. In deep learning area, it was first mentioned
by Jonathan Long et al. [1] in 2015. The model uses many
convolutional layers [2] to process the input images and output
the class of each pixel in image, which is called 'mask’. During
the past few years, there are many semantic segmentation
models have been created, such as U-Net [3], which is mainly
used for biomedical images segmentation, and DeepLab Series
[4], which is mainly used in autonomous driving.

B. Autonomous Driving

In autonomous driving, semantic segmentation is able to
recognise the different types of scenarios and objects the
vehicle may encounter along the way. Compared with driving
in urban roads and segment the input images from camera,
doing segmentation in natural environments may bring more
challenges to the vehicle. For example, when driving in a
forest, they should detect where is the mud or puddle and
keep away from them. There are also many tall trees and grass
in the forest, the camera of the vehicle should segment them
precisely and find the right road to drive.

C. Natural Environments Dataset

Kavisha Vidanapathirana et al. [5] published a dataset of
natural environments in Australian forests. In the 2D parts
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(a) Original Image

(b) Gray-scale Mask (c) Color-map Mask

Fig. 1: Three samples of the WildScenes dataset. From left to
right is the original image, the gray-scale mask of image and
the color-map mask of image

of the dataset, it includes 9306 images about natural en-
vironments and their labeled mask in five different routes at
different season. They manually annotated semantic segmen-
tations for every sampled 2D image in their dataset, dividing
the observed scene into a collection of different natural-scene
classes. Figure 1. shows some samples of the dataset.

D. Our Work

In this report, we compare three deep learning networks-
DeepLabV3 [4], DeepLabV3+ [6], PSPNet [7]-on the nat-
ural environments dataset to test them whether can finish
the semantic segmentation task in autonomous driving. We
randomly select many images from the original dataset and
divide them into training-set, validate-set and test-set in ratio.
We use the pre-implemented models and pre-trained weights
based on ImageNet [8] from Pytorch [9], Torchvision and
Segmentation-Models-Pytorch [10]. We use torchmetrics [11]
to calculate the metrics.


https://drive.google.com/drive/folders/1Grtz9nMAm2IKunx0JNI140Z5aMJ1E0uZ?usp=sharing

II. LITERATURE REVIEW
A. Convolutional Neural Networks

1) LeNet: LeCun et al. [12] used several convolutional
layer, pooling layer to form a Deep Learning model and
implemented it to recognise hand-write numbers in 1998. This
is one of the earliest applications of neural networks. However,
with the increasing difficulty of the task, LeNet can not finish
the recognition of these tasks with high accuracy because its
structure is too simple.

2) AlexNet: AlexNet is one of the most successful networks
in the early of computer vision area. It was created by
Krizhevsky et al. [13] in 2012. It uses convolutional layer,
maximum pooling layer and fully connected layer to form the
structure of network, and uses RELU [14] activate function and
dropout [15] to avoid over fitting, which made a breakthrough
in ImageNet classification challenge. However, AlexNet’s task
is focus on image classification, it can not performance well
in object detection and semantic segmentation area.

B. Semantic Segmentation

1) FCN: Fully Convolutional Networks (FCN) was created
by Jonathan et al. [1] in 2015. It introduced convolutional
neural networks to semantic segmentation area by removing
the fully connected layer at the end of the network with
convolutional layer, and using upsampling to restore the
resolution of image, which inspired other subsequent work.
However, similar with the LeNet, it can not finish some
complex segmentation tasks because of its simple network
structure.

2) U-Net: U-Net was created by Ronneberger et al. [3]
in 2015. It uses encoder-decoder to extract features and uses
skip connections to connect corresponding layer, which can
process the edge information in high accuracy. However, U-
Net is widely used in segment biomedical images, it can
not performance as well as the following networks we will
introduce in autonomous driving area.

C. Semantic Segmentation in Autonomous driving

1) DeepLab Series: DeepLab is one of the most popular
semantic segmentation models in autonomous driving area,
which was created by LC Chen et al. [4] [16] [6] in 2017. In
DeepLab, authors uses Atrous Convolution [4] to expand the
receptive fields so it can capture more contextual information
without increasing the computation. It also uses ASPP [16]
and CRF [4] to improve the segmentation accuracy. In this
report, we will compare the accuracy of DeepLabV3 and
DeepLabV3+ on the natural environments dataset, and analysis
why they can segment pixels in high accuracy.

2) PSPNet: H Zhao et al. [7] created PSPNet in 2017. It
firstly uses a pretrained model, such as resnet [17], to extract
the feature of the image, and uses Pyramid Pooling Module
to capture muti-scale contextual information, then fuses the
multi-scale features and finally input them into a classifier for
prediction. In this report, we will compare the performance of
PSPNet and DeepLab net on the natural environment dataset
and try to explain why they work good or bad.

III. METHODS
A. Split the Dataset

There are 9306 images and their corresponding masks in
the 2D dataset. Due to the GPU constraint, we can not use
all of them to train the dataset. So we randomly select a part
of them for our training. The dataset includes five folders,
for each folder, we randomly select 300, 150 50 images to
training-set, validate-set and test-set, respectively. So we have
1500, 750, 250 images in training-set, validate-set and test-set,
which is the ratio of 6:3:1.

B. Image pre-processing

1) Original images: For each input image, we resize it into
512 * 512 and expand it to tensor. We do not use normalization
to process the images because we want to preserve more
features of the image.

2) Masks: There are 19 classes in this natural environments
dataset, which is labeled from O to 18, O is the background.
The value of each pixel in mask indicates the class it belongs
to. So the first step we need to remapping the labels into range
0 to 15 because three classes have been deleted in the paper
of WildScenes [5]. After remapping, we resize the mask into
512 * 512 which is same as the original images and expand
it to tensor.

C. ResNet

ResNet [17] is one of the most famous network structures
today. Its main idea is using 'Residual Connection’ and *Short-
cut Connection’ to add the inputs directly to the outputs of the
following layers, which can solve the gradient vanishing and
gradient explosion problem. With Resnet, we can train very
deep networks. ResNet has many differents structures, such
as resent50, resnetl101, resnext [18], and so on. Resnet can be
used directly as a network structure for image classification or
as a backbone for other networks for feature extraction.

D. DeepLabV3

1) Resnet Backbone: DeepLabV3 uses ResNet backbone to
extract the features of input images. This feature map will be
used in Atrous Convolution and ASPP parts.

2) Atrous Convolution: One of the main idea in DeepLab
is that it created Atrous Convolution. Inserting some O values
to the traditional convolution kernels, which can expand the
view of the convolution but doesn’t increase the volume of
computation because we do not care the weights of zero.

3) Atrous Spatial Pyramid Pooling: ASPP part uses differ-
ent size atrous convolution to capture multi-scale contextual
information and merge them together for subsequent segme-
natation task. After ASPP part, the feature map will contain
multiple features of different scales.

E. DeepLabV3+

1) Decoder: Based on DeepLabV3, DeepLabV3+ add an
decoder. Encoder part uses backbone (such as ResNet or
Xception) to extract the feture map, decoder part is used to
recover the details and boundary information in segmented
images.



2) Improved ASPP: In ASPP part of DeepLabV3+, it uses
more atrous convolution in different sizes, and implements
some optimizations in feature merging.

F. PSPNet

1) ResNet Backbone: PSPNet uses ResNet structure to
extract the features of input images. The output feature maps
have 2048 channels, which contains different levels and scales
image features.

2) PPM: PSPNet designs a Pyramid Pooling Module
(PPM). It contains 3 parts: Multi scale pooling, upsampling
and feature convergence. Using different size (such as 1xl1,
3x3, 6x6) pooling layers to process the feature map, and
upsampling the processed feature map to original size. Then,
merged original feature map and processed feature map to get
a integrated feature map with multiscale information.

G. Hyper Parameters

1) Epochs: 60

2) Learn Rate: le — 4

3) Optimizer: Adam

4) Criterion: CrossentropylLoss

5) Patience: 10

We use early stop to avoid overfitting. If the validate loss
does not go down in 10 continuous epochs, the training will
be stopped.

H. Metrics

We calculate the mloU, mRecall and mAccuracy of the
validate-set and test-set.

TABLE I: Confusion Matrix

Predicted Positive

True Positive (TP)
False Positive (FP)

Predicted Negative

False Negative (FN)
True Negative (TN)

Actual Positive
Actual Negative

1) IoU: ToU is a widely used metric in semantic segmen-
tation area. It is is defined as the ratio of the intersection of
the predicted and actual positive regions to their union.
_ TP
- TP+FP+FN

2) Recall: Recall is the ratio of true positive observations
to the total actual positives:

ToU (1)

TP
Recall = ——— )
TP 4+ FN

3) Accuracy: Accuracy is the ratio of true results (both true
positives and true negatives) among the total number of cases
examined:

R TP + TN 5
ccuracy =
Y~ TP+ TN + FP + EN

In a semantic segmentation task, we mainly focus on the
performance of IoU because it can balance the impact of
the various classes and prevent certain common classes from
dominating the results of evaluations.

IV. EXPERIMENTAL RESULTS

In order to improve the training speed, we upload the dataset
to Google Drive and use A100 GPU provided by Colab to train
the model. For each model, we save the best weights with the
lowest validation loss and use it to test.

A. Training Curves

Figure 2. Figure 3. and Figure 4. in the appendix show the
training loss, validation loss, validation mloU, mRecall and
mAccuracy of three models.
B. Test the models on test-set

Table II. shows the result of these three model’s mloU,
mRecall and mAccuracy on the test set.

TABLE II: Performance Metrics of Different Models

on Test-set
Model mloU (%) mRecall (%) mAccuracy (%)
DeepLabV3 15.98 21.29 22.31
DeepLabV3+  16.36 21.78 22.38
PSPNet 15.01 20.35 21.92

C. Prediction Results

Figure 5. Figure 6. and Figure 7. in the appendix show the
predictions of the three models on the same five images.

V. DISCUSSION
A. DeepLabV3 vs DeepLabV3+

DeepLabV3+ performs better than DeepLabV3 on all
three metrics, this is because that DeepLabV3+ uses an
encoder-decoder structure to capture the contextual informa-
tion of images. Compared with Figure 5.,Figure 6. shows that
DeepLabV3+ can segment more details of the images. Its
predicted masks look like more roughly, especially for some
tiny branches and tree trunks, DeepLabV3+ can segment them
but DeepLabV3 can not do it.

However, both of these two models face over fitting prob-
lems. DeepLabV3+’s over fitting is a little more obvious, with
a large error between the train loss and the validation loss.
We think this is because that the existing structures of the
networks are not able to learn new parameters after several
epochs. The curves of mloU and mAccuracy remain stable,
with no significant increase, which also supports our idea. It
means that the structure of DeepLab should be improved to
finish this natural environments segmentation task.

B. DeepLabV3 vs PSPNet

PSPNet did not perform as well as DeepLab on all three
evaluation metrics, all the evaluation metrics are lower that
DeepLab, which means that using PSPNet to segment the
natural environments dataset is not a good idea. We think
this is because that DeepLabV3 uses ASPP with Atrous
Convolution and PSPNet uses PPM models to capture the
features of input image. PSPNet’s method is not as good as
DeepLab’s method in terms of detail processing. From Figure



7., we can see that the masks of branches and tree trunks look
much wider than the actual mask, which shows that PSPNet
can not process edges information as good as DeepLab series.

C. IoU on Each Class

Table III. shows the result of 15 classes segmented by
three models. DeepLabV3+ performs better in segmentation
the class ’dirt’ and 'mud’, DeepLabV3 performs better in
segmentation the class *water’.

TABLE III: IoU Comparison of Three Models for Each Class

Class | DeepLabV3 | DeepLabV3+ | PSPNet
unlabelled 0.6600 0.6672 0.6428
dirt 0.4831 0.5093 0.4295
mud 0.7192 0.7280 0.6908
water 0.2114 0.1994 0.1392
gravel 0.1675 0.1677 0.1682
other-terrain 0.2533 0.2516 0.2554
tree-trunk 0.0534 0.0766 0.0520
tree-foliage 0.0095 0.0182 0.0161
bush 0 0 0.0006
fence 0 0.0001 0.0066
structure 0 0 0
rock 0 0 0
log 0 0 0
other-object 0 0 0
sky 0 0 0
grass 0 0 0
Average |  0.1598 | 0.1636 | 0.1501

VI. CONCLUSION

In this project, we train three deep learning neural networks-
DeepLabV3, DeepLabV3+, PSPNet-on a natural environments
dataset for semantic segmentation task in autonomous driving.
We compaere their mloU, mRecall and mAccuracy on the
test-set. We analysis the reason why the model performs good
or bad. According to our experimental results, DeepLabV3+
performs the best in these three models. For our future work,
we will focus on more semantic segmentation models like Seg-
former [19] or UperNet [20]. We will test their performance
on this dataset and find some ways to improve their accuracy.
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Fig. 2: Training Loss Curve for DeepLabV3
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Fig. 3: Training Loss Curve for DeepLabV3+
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Fig. 4: Training Loss Curve for PSPNet
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Fig. 5: Prediction Results for DeepLabV3
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Fig. 6: Prediction Results for DeepLabV3+
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